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January 2016 global surface air temperature overview 
 

 

 

 

 

January 2016 surface air temperature compared to the average of the last 10 years. Green-yellow-red colours indicate areas with higher 

temperature than the 10 year average, while blue colours indicate lower than average temperatures. Data source: Goddard Institute for 

Space Studies (GISS). 

http://www.giss.nasa.gov/
http://www.giss.nasa.gov/
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Comments to the January 2016 global surface air temperature overview 

 
 
General:  This newsletter contains graphs showing 
a selection of key meteorological variables for the 
past month. All temperatures are given in degrees 
Celsius. 
 
In the above maps showing the geographical 
pattern of surface air temperatures, the last 
previous 10 years (2006-2015) are used as 
reference period.  
 
The reason for comparing with this recent period 
instead of the official WMO ‘normal’ period 1961-
1990, is that the latter period is profoundly 
affected by the cold period 1945-1980. Most 
comparisons with this time period will 
automatically appear as warm, and it will be 
difficult to decide if modern surface air 
temperatures are increasing or decreasing? 
Comparing instead with the last previous 10 years 
overcomes this problem and displays the dynamics 
of ongoing modern change. 
 
In addition, the GISS temperature data used for 
preparing the above diagrams display distinct 
temporal instability for data before the turn of the 
century (see p. 7). Any comparison with the WMO 
‘normal’ period 1961-1990 is therefore influenced 
by ongoing monthly changes of the so-called 
‘normal’ period, and is not suited as reference. 
Comparing with the last previous 10 years is more 
useful. 
 
In many diagrams shown in this newsletter the thin 
line represents the monthly global average value, 
and the thick line indicate a simple running 
average, in most cases a simple moving 37-month 
average, nearly corresponding to a three-year 
average. The 37-month average is calculated from 
values covering a range from 18 month before to 

18 months after, with equal weight for every 
month. 
 
The year 1979 has been chosen as starting point in 
many diagrams, as this roughly corresponds to 
both the beginning of satellite observations and the 

onset of the late 20th century warming period. 
However, several of the data series have a much 
longer record length, which may be inspected in 
greater detail on www.Climate4you.com. 
 
 
January 2016 global surface air temperatures   
 

General: The average global air temperature was 
above the average for the last ten years. One 
reason for this is the present El Niño episode in the 
Pacific Ocean (see p.12), which affects the global 
air temperature in warm direction.  
 
The Northern Hemisphere was generally relatively 
warm, but especially over land areas at high 
latitudes. Especially Alaska and northern Siberia 
were warm. In contrast, USA, Europe, the North 
Atlantic and much of Asia were cold. The especially 
warm regions are all at high latitude, where solar 
radiation is zero or close to zero in January. The 
warming recorded are therefore likely to be the 
result of advection of air masses from lower 
latitudes, influence of a nearby open ocean, or 
something else. 
 
Near the Equator temperatures were above 
average in most of the central and eastern Pacific 
Ocean, reflecting the ongoing El Niño episode. 
Otherwise, temperatures were near the average 
for the last 10 years. However, extensive parts of 
NE Africa were relatively cold. 
  
The Southern Hemisphere temperatures were 
generally below the previous 10-year average. 
However, temperatures were above the average in 
southern Africa. Australia, New Zealand and a 
considerable part of South America was relatively 
cold. The Antarctic continent had entirely below 
average temperatures, even though this continent 
is having more or less permanently daylight in 
January. This represents an interesting contrast to 
the situation in the Arctic (see above). 
 

  

http://www.climate4you.com/
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Temperature quality class 1: Lower troposphere temperature from satellites, updated to January 
2016 
 

 

Global monthly average lower troposphere temperature (thin line) since 1979 according to University of Alabama at Huntsville, USA. The 

thick line is the simple running 37-month average. 

 

 

Global monthly average lower troposphere temperature (thin line) since 1979 according to according to Remote Sensing Systems (RSS), 

USA. The thick line is the simple running 37-month average.  

http://www.atmos.uah.edu/atmos/
http://www.remss.com/
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Temperature quality class 2: HadCRUT global surface air temperature, updated to December 2015 

 

 

Global monthly average surface air temperature (thin line) since 1979 according to according to the Hadley Centre for Climate Prediction 

and Research and the University of East Anglia's Climatic Research Unit (CRU), UK. The thick line is the simple running 37-month average. 

Please note that this diagram is not yet updated beyond December 2015. 

  

 

 

 

 

 

 

 

 

 

 

 

http://hadobs.metoffice.com/
http://hadobs.metoffice.com/
http://www.uea.ac.uk/
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/cru/bground/
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Temperature quality class 3: GISS and NCDC global surface air temperature, updated to January 

2016 

 

Global monthly average surface air temperature (thin line) since 1979 according to according to the Goddard Institute for Space Studies 

(GISS), at Columbia University, New York City, USA.  The thick line is the simple running 37-month average.  

 

 

Global monthly average surface air temperature since 1979 according to according to the National Climatic Data Center (NCDC), USA.  

The thick line is the simple running 37-month average.  

http://www.giss.nasa.gov/
http://www.ncdc.noaa.gov/oa/ncdc.html
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A note on data record stability and -quality:                              

All temperature diagrams shown above have 1979 

as starting year. This roughly marks the beginning 

of the recent period of global warming, after 

termination of the previous period of global cooling 

from about 1940. In addition, the year 1979 also 

represents the starting date for the satellite-based 

global temperature estimates (UAH and RSS). For 

the three surface air temperature records 

(HadCRUT, NCDC and GISS), they start much earlier 

(in 1850 and 1880), as can be inspected on 

www.climate4you.com. 

For all three surface air temperature records, but 

especially NCDC and GISS, administrative changes 

to anomaly values are quite often introduced, even 

for observations many years back in time. Some 

changes may be due to the delayed addition of new 

station data, while others probably have their 

origin in a change of technique to calculate average 

values. It is clearly impossible to evaluate the 

validity of such administrative changes for the 

outside user of these records; it is only possible to 

note that such changes appear very often (se 

example diagram next page). In addition, the three 

surface records represent a blend of sea surface 

data collected moving ships or by other means, 

plus data from land stations of partly unknown 

quality and unknown degree of representativeness 

for their region. Many of the land stations have 

also moved geographically during their existence, 

and their instrumentation changed.  

The satellite temperature records also have their 

problems, but these are generally of a more 

technical nature and therefore correctable. In 

addition, the temperature sampling by satellites is 

more regular and complete on a global basis than 

that represented by the surface records. 

 

All interested in climate science should gratefully 

acknowledge the big efforts put into maintaining all 

temperature databases referred to in the present 

newsletter. At the same time, however, it is also 

realistic to understand that all temperature records 

cannot be of equal scientific quality. The simple 

fact that they to some degree differ clearly signals 

that they are not all correct.  

On this background, and for practical reasons, 

Climate4you has decided to operate with three 

quality classes (1-3) for global temperature records, 

with 1 representing the highest quality level:  

Quality class 1: The satellite records (UAH and RSS).  

Quality class 2: The HadCRUT surface record.  

Quality class 3: The NCDC and GISS surface records.  

The main reasons for discriminating between the 

three surface records are the following:  

1) While both NCDC and GISS often experience 

quite large administrative changes, and therefore 

essentially are unstable temperature records, the 

changes introduced to HadCRUT are fewer and 

smaller. For obvious reasons, as the past do not 

change, a record undergoing continuing changes 

cannot describe the past correctly all the time. 

2) A comparison with the superior Argo float sea 

surface temperature record shows that while 

HadCRUT uses a sea surface record (HadSST3) 

nicely in concert with the Argo record, this is 

apparently not the case for the other two records, 

see, e.g., the diagram on page 14.  

You can find more on the issue of lack of temporal 

stability on www.climate4you.com (go to: Global 

Temperature, followed by Temporal Stability). 

 

http://www.climate4you.com/
file:///E:/Manus/Climate4you%20Monthly/SeaTemperatures.htm%23HadSST3
http://www.climate4you.com/
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Diagram showing the adjustment made since May 2008 by the Goddard Institute for Space Studies (GISS), USA, 

in anomaly values for the months January 1910 and January 2000.  

 

 

Note: The administrative upsurge of the temperature increase between January 1915 and January 2000 has 

grown from 0.45 (reported May 2008) to 0.71oC (reported January 2016), representing an about 58% 

administrative temperature increase over this period, meaning that more than half of the apparent 

temperature increase from January 1910 to January 2000 is due to administrative changes of the original data 

since May 2008. 

 

 

 

http://www.giss.nasa.gov/
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Comparing global surface air temperature and lower troposphere satellite temperatures; 

updated to December 2015 

 

 

Plot showing the average of monthly global surface air temperature estimates (HadCRUT4, GISS and NCDC) and 
satellite-based temperature estimates (RSS MSU and UAH MSU). The thin lines indicate the monthly value, 
while the thick lines represent the simple running 37 month average, nearly corresponding to a running 3 yr 
average. The lower panel shows the monthly difference between average surface air temperature and satellite 
temperatures. As the base period differs for the different temperature estimates, they have all been normalised 
by comparing to the average value of 30 years from January 1979 to December 2008.  
 
 
 
NOTE: Since about 2003, the average global surface air temperature is steadily drifting away in positive 
direction from the average satellite temperature, meaning that the surface records show warming in relation 
to the troposphere records. The reason(s) for this is not entirely clear, but can presumably at least partly be 
explained by the recurrent administrative adjustments made to the surface records (see p. 7-8).  
 
 
 
 

http://www.climate4you.com/GlobalTemperatures.htm#HadCRUT TempDiagram
http://www.climate4you.com/GlobalTemperatures.htm#GISS TempDiagram
http://www.climate4you.com/GlobalTemperatures.htm#NCDC TempDiagram
http://www.climate4you.com/GlobalTemperatures.htm#RSS MSU TempDiagram
http://www.climate4you.com/GlobalTemperatures.htm#UAH MSU TempDiagram
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 Global air temperature linear trends updated to December 2015 

 

 

Diagram showing the latest 5, 10, 20 and 30 yr linear annual global temperature trend, calculated as the slope of the linear 

regression line through the data points, for two satellite-based temperature estimates (UAH MSU and RSS MSU).  

 

 

Diagram showing the latest 5, 10, 20, 30, 50, 70 and 100 year linear annual global temperature trend, calculated as the 
slope of the linear regression line through the data points, for three surface-based temperature estimates (GISS, NCDC and 
HadCRUT4).  
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All in one, Quality Class 1, 2 and 3; updated to December 2015 

 

Superimposed plot of Quality Class 1 (UAH and RSS) global monthly temperature estimates. As the base period differs for 
the individual temperature estimates, they have all been normalised by comparing with the average value of the initial 120 
months (30 years) from January 1979 to December 2008. The heavy black line represents the simple running 37 month (c. 3 
year) mean of the average of all five temperature records. The numbers shown in the lower right corner represent the 
temperature anomaly relative to the individual 1979-1988 averages.  
 

 
 
Superimposed plot of Quality Class 1 and 2 (UAH, RSS and HadCRUT4) global monthly temperature estimates. As the base 
period differs for the individual temperature estimates, they have all been normalised by comparing with the average value 
of the initial 120 months (30 years) from January 1979 to December 2008. The heavy black line represents the simple 
running 37 month (c. 3 year) mean of the average of all five temperature records. The numbers shown in the lower right 
corner represent the temperature anomaly relative to the individual 1979-1988 averages. 
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Superimposed plot of Quality Class 1, 2 and 3 global monthly temperature estimates (UAH, RSS, HadCRUT4, GISS and 
NCDC). As the base period differs for the individual temperature estimates, they have all been normalised by comparing 
with the average value of the initial 120 months (30 years) from January 1979 to December 2008. The heavy black line 
represents the simple running 37 month (c. 3 year) mean of the average of all five temperature records. The numbers 
shown in the lower right corner represent the temperature anomaly relative to the individual 1979-1988 averages.  
 

Please see notes on page 7 relating to the above three quality classes. 

 

 
It should be kept in mind that satellite- and surface-
based temperature estimates are derived from 
different types of measurements, and that 
comparing them directly as done in the diagram 
above therefore may be somewhat problematical. 
However, as both types of estimate often are 
discussed together, the above diagram may 
nevertheless be of some interest. In fact, the 
different types of temperature estimates appear to 
agree as to the overall temperature variations on a 
2-3 year scale, although on a shorter time scale 
there are often considerable differences between 
the individual records. However, since about 2003 
the surface records seem to be drifting towards 
higher temperatures than the satellite records in a 
consistent way (see p. 9). 

The average of all five global temperature 
estimates presently shows an overall stagnation, at 
least since 2002-2003. There has been no real 
increase in global air temperature since 1998, 
which however was affected by the oceanographic 
El Niño event. Neither has there been a 
temperature decrease during this time interval. 

This temperature stagnation does not exclude the 
possibility that global temperatures will begin to 
increase again later. On the other hand, it also 
remain a possibility that Earth just now is passing a 
temperature peak, and that global temperatures 
will begin to decrease during the coming years. 
Time will show which of these two possibilities is 
correct. 
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Global sea surface temperature, updated to January 2016 

 

Sea surface temperature anomaly on 3 February 2016. Map source: National Centers for Environmental Prediction (NOAA). 

 

Because of the large surface areas near Equator, 
the temperature of the surface water in these 
regions is especially important for the global 
atmospheric temperature (p.4-6).  

Relatively warm water is dominating the oceans 
near the Equator, and is influencing global air 
temperatures now and in the months to come. 

The significance of any such short-term cooling or 
warming reflected in air temperatures should not 
be over stated. Whenever Earth experiences cold 
La Niña or warm El Niño episodes (Pacific Ocean) 

major heat exchanges takes place between the 
Pacific Ocean and the atmosphere above, 
eventually showing up in estimates of the global air 
temperature.  

However, this does not reflect similar changes in 
the total heat content of the atmosphere-ocean 
system. In fact, global net changes can be small and 
such heat exchanges may mainly reflect 
redistribution of energy between ocean and 
atmosphere. What matters is the overall 
temperature development when seen over a 
number of years. 
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Global monthly average lower troposphere temperature over oceans (thin line) since 1979 according to University of Alabama at 

Huntsville, USA. The thick line is the simple running 37 month average. Insert: Argo global ocean temperature anomaly from floats. 

 

 

Global monthly average sea surface temperature since 1979 according to University of East Anglia's Climatic Research Unit (CRU), UK.  

Base period: 1961-1990. The thick line is the simple running 37-month average. Insert: Argo global ocean temperature anomaly from 

floats. 

http://www.atmos.uah.edu/atmos/
http://www.uea.ac.uk/
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/cru/bground/
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Global monthly average sea surface temperature since 1979 according to the National Climatic Data Center (NCDC), USA. Base period: 

1901-2000. The thick line is the simple running 37-month average. Insert: Argo global ocean temperature anomaly from floats. 

 

June 18, 2015: NCDC has introduced a number of rather large administrative changes to their sea surface temperature record. The 
overall result is to produce a record giving the impression of a continuous temperature increase, also in the 21st century. As the oceans 
cover about 71% of the entire surface of planet Earth, the effect of this administrative change is clearly seen in the NCDC record for 
global surface air temperature (p. 6). 

 

 

 

 

 

 

 

 

 

 

http://www.ncdc.noaa.gov/oa/ncdc.html
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Ocean temperature in uppermost 100 and 700 m, updated to December 2015 

World Oceans vertical average temperature 0-700 m depth since 1955. The thin line indicates 3-month values, and the thick line 
represents the simple running 39-month (c. 3 year) average. Data source: NOAA National Oceanographic Data Center (NODC). Base 
period 1955-2010. 

 

World Oceans vertical average temperature 0-100 m depth since 1955. The thin line indicates 3-month values, and the thick line 
represents the simple running 39-month (c. 3 year) average. Data source: NOAA National Oceanographic Data Center (NODC). Base 
period 1955-2010. 

http://www.nodc.noaa.gov/
http://www.nodc.noaa.gov/
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Pacific Ocean vertical average temperature 0-100 m depth since 1955. The thin line indicate 3-month values, and the thick line 

represents the simple running 39-month (c. 3 year) average. Data source: NOAA National Oceanographic Data Center (NODC). Base 

period 1955-2010. 

Atlantic Ocean vertical average temperature 0-100 m depth since 1955. The thin line indicate 3-month values, and the thick line 

represents the simple running 39-month (c. 3 year) average. Data source: NOAA National Oceanographic Data Center (NODC). Base 

period 1955-2010. 

http://www.nodc.noaa.gov/
http://www.nodc.noaa.gov/
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Indian Ocean vertical average temperature 0-100 m depth since 1955. The thin line indicate 3-month values, and the thick line 

represents the simple running 39-month (c. 3 year) average. Data source: NOAA National Oceanographic Data Center (NODC). Base 

period 1955-2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.nodc.noaa.gov/
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North Atlantic heat content uppermost 700 m, updated to September 2015 

 

 

 

 

Global monthly heat content anomaly (GJ/m2) in the uppermost 700 m of the North Atlantic (60-0W, 30-65N; see map above) ocean 
since January 1955. The thin line indicates monthly values, and the thick line represents the simple running 37 month (c. 3 year) average. 
Data source: National Oceanographic Data Center (NODC). 

 

http://www.nodc.noaa.gov/cgi-bin/OC5/3M_HEAT/heatdata.pl?time_type=3month700
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North Atlantic sea temperatures along 59N, updated to November 2015 

 

Time series depth-temperature diagram along 59 N across the North Atlantic Current from 30
o
W to 0

o
W, from surface to 

800 m depth. Source: Global Marine Argo Atlas. See also diagram next page.  

http://www.argo.ucsd.edu/Marine_Atlas.html
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North Atlantic sea temperatures 30-0W at 59N, updated to November 2015 

 

 

Average temperature along 59 N, 30-0W, 0-800m depth, corresponding to the main part of the North Atlantic Current, 
using Argo-data. Source: Global Marine Argo Atlas. Additional information can be found in: Roemmich, D. and J. Gilson, 
2009. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo 
Program. Progress in Oceanography, 82, 81-100.  

http://www.argo.ucsd.edu/
http://www.argo.ucsd.edu/Marine_Atlas.html
http://www.sciencedirect.com/science/journal/00796611
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Troposphere and stratosphere temperatures from satellites, updated to January 2016 

 
 
Global monthly average temperature in different altitudes according to Remote Sensing Systems (RSS). The thin lines 
represent the monthly average, and the thick line the simple running 37 month average, nearly corresponding to a running 
3 year average.   

http://www.remss.com/
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Zonal lower troposphere temperatures from satellites, updated to January 2016 

 

 

Global monthly average lower troposphere temperature since 1979 for the tropics and the northern and southern 

extratropics, according to University of Alabama at Huntsville, USA. Thin lines show the monthly temperature. Thick lines 

represent the simple running 37-month average, nearly corresponding to a running 3 year average. Reference period 1981-

2010.  
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Arctic and Antarctic lower troposphere temperature, updated to January 2016 

 

 

Global monthly average lower troposphere temperature since 1979 for the North Pole and South Pole regions, based on satellite 

observations (University of Alabama at Huntsville, USA). Thin lines show the monthly temperature. The thick line is the simple running 

37-month average, nearly corresponding to a running 3 year average. Reference period 1981-2010. 

 

 

http://www.atmos.uah.edu/atmos/
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Arctic and Antarctic surface air temperature, updated to December 2015 

 

 

Diagram showing area weighted Arctic (70-90
o
N) monthly surface air temperature anomalies (HadCRUT4) since January 

2000, in relation to the WMO normal period 1961-1990. The thin line shows the monthly temperature anomaly, while the 

thicker line shows the running 37 month (c. 3 year) average. 

 

 

Diagram showing area weighted Antarctic (70-90
o
N) monthly surface air temperature anomalies (HadCRUT4) since 

January 2000, in relation to the WMO normal period 1961-1990. The thin line shows the monthly temperature anomaly, 

while the thicker line shows the running 37 month (c. 3 year) average. 

http://www.cru.uea.ac.uk/cru/data/temperature/
file:///C:/Ole/Manus/Climate4you%20Monthly/NormalClimateNormalPeriod.htm
http://www.cru.uea.ac.uk/cru/data/temperature/
file:///C:/Ole/Manus/Climate4you%20Monthly/NormalClimateNormalPeriod.htm
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Diagram showing area weighted Arctic (70-90
o
N) monthly surface air temperature anomalies (HadCRUT4) since January 

1957, in relation to the WMO normal period 1961-1990. The thin line shows the monthly temperature anomaly, while the 

thicker line shows the running 37 month (c. 3 year) average. 

 

 

Diagram showing area weighted Antarctic (70-90
o
N) monthly surface air temperature anomalies (HadCRUT4) since 

January 1957, in relation to the WMO normal period 1961-1990. The thin line shows the monthly temperature anomaly, 

while the thicker line shows the running 37 month (c. 3 year) average. 

http://www.cru.uea.ac.uk/cru/data/temperature/
file:///C:/Ole/Manus/Climate4you%20Monthly/NormalClimateNormalPeriod.htm
http://www.cru.uea.ac.uk/cru/data/temperature/
file:///C:/Ole/Manus/Climate4you%20Monthly/NormalClimateNormalPeriod.htm
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Diagram showing area-weighted Arctic (70-90
o
N) monthly surface air temperature anomalies (HadCRUT4) since January 

1920, in relation to the WMO normal period 1961-1990. The thin line shows the monthly temperature anomaly, while the 

thicker line shows the running 37 month (c. 3 year) average. Because of the relatively small number of Arctic stations 

before 1930, month-to-month variations in the early part of the temperature record are larger than later. The period from 

about 1930 saw the establishment of many new Arctic meteorological stations, first in Russia and Siberia, and following 

the 2nd World War, also in North America. The period since 2000 is warm, about as warm as the period 1930-1940. 

 

 

As the HadCRUT4 data series has improved high 
latitude coverage data coverage (compared to the 
HadCRUT3 series) the individual 5ox5o grid cells has 
been weighted according to their surface area. This 
is in contrast to Gillet et al. 2008 which calculated a 
simple average, with no consideration to the 
surface area represented by the individual 5ox5o 
grid cells. 
 

 
Literature: 
 
Gillett, N.P., Stone, D.A., Stott, P.A., Nozawa, T., 
Karpechko, A.Y.U., Hegerl, G.C., Wehner, M.F. and 
Jones, P.D. 2008. Attribution of polar warming to 
human influence. Nature Geoscience 1, 750-754. 

 

 

 

 

 

 

 

 

http://www.cru.uea.ac.uk/cru/data/temperature/
file:///C:/Ole/Manus/Climate4you%20Monthly/NormalClimateNormalPeriod.htm
file:///C:/Ole/Manus/Climate4you%20Monthly/ClimateAndHistory%201900-1949.htm%231933:%20Stalin%20orders%20the%20Northeast%20Passage%20made%20a%20navigable%20waterway
file:///C:/Ole/Manus/Climate4you%20Monthly/ReferencesCited.htm
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Arctic and Antarctic sea ice, updated to January 2016 

 

Sea ice extent 2 February 2016. The 'normal' or average limit of sea ice (orange line) is defined as 15% sea ice cover, according to the 

average of satellite observations 1981-2010 (both years inclusive). Sea ice may therefore well be encountered outside and open water 

areas inside the limit shown in the diagrams above. Map source: National Snow and Ice Data Center (NSIDC). 

 

 

Graphs showing monthly Antarctic, Arctic and global sea ice extent since November 1978, according to the National Snow and Ice data 

Center (NSIDC). 

http://nsidc.org/data/seaice_index/baseline-change.html
http://nsidc.org/data/seaice_index/index.html
http://nsidc.org/data/seaice_index/index.html
http://nsidc.org/data/seaice_index/index.html
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Diagram showing daily Arctic sea ice extent since June 2002, to 3 February 2016, by courtesy of Japan Aerospace Exploration Agency 

(JAXA).  

 

http://www.jaxa.jp/index_e.html
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Northern hemisphere sea ice extension and thickness on 31 January 2016 according to the Arctic Cap Nowcast/Forecast System (ACNFS), 
US Naval Research Laboratory. Thickness scale (m) to the right. 
 
 

http://www7320.nrlssc.navy.mil/hycomARC/
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12 month running average sea ice extension, global and in both hemispheres since 1979, the satellite-era. The October 1979 value 
represents the monthly 12-month average of November 1978 - October 1979, the November 1979 value represents the average of 
December 1978 - November 1979, etc. The stippled lines represent a 61-month (ca. 5 years) average. Data source: National Snow and Ice 
Data Center (NSIDC).   
 
 
 

 
 
 
 
 
 

http://nsidc.org/data/seaice_index/index.html
http://nsidc.org/data/seaice_index/index.html
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Sea level in general 
 
Global (or eustatic) sea-level change is measured relative to an 

idealised reference level, the geoid, which is a mathematical 

model of planet Earth’s surface (Carter et al. 2014). Global sea-

level is a function of the volume of the ocean basins and the 

volume of water they contain. Changes in global sea-level are 

caused by – but not limited to - four main mechanisms: 

1. Changes in local and regional air pressure and wind, 

and tidal changes introduced by the Moon.  

2. Changes in ocean basin volume by tectonic 

(geological) forces.  

3. Changes in ocean water density caused by variations 

in currents, water temperature and salinity.  

4. Changes in the volume of water caused by changes in 

the mass balance of terrestrial glaciers.  

In addition to these there are other mechanisms influencing 

sea-level; such as storage of ground water, storage in lakes and 

rivers, evaporation, etc.  

Mechanism 1 is controlling sea-level at many sites on a time 

scale from months to several years. As an example, many 

coastal stations show a pronounced annual variation reflecting 

seasonal changes in air pressures and wind speed. Longer-term 

climatic changes playing out over decades or centuries will also 

affect measurements of sea-level changes. Hansen et al. (2011, 

2015) provide excellent analyses of sea-level changes caused 

by recurrent changes of the orbit of the Moon and other 

phenomena.  

Mechanism 2 – with the important exception of earthquakes 

and tsunamis - typically operates over long (geological) time 

scales, and is not significant on human time scales. It may 

relate to variations in the sea-floor spreading rate, causing 

volume changes in mid-ocean mountain ridges, and to the 

slowly changing configuration of land and oceans. Another 

effect may be the slow rise of basins due to isostatic offloading 

by deglaciation after an ice age. The floor of the Baltic Sea and 

the Hudson Bay are presently rising, causing a slow net 

transfer of water from these basins into the adjoining oceans. 

Slow changes of very big glaciers (ice sheets) and movements 

in the mantle will affect the gravity field and thereby the 

vertical position of the ocean surface. Any increase of the total 

water mass as well as sediment deposition into oceans 

increase the load on their bottom, generating sinking by 

viscoelastic flow in the mantle below. The mantle flow is 

directed towards the surrounding land areas, which will rise, 

thereby partly compensating for the initial sea level increase 

induced by the increased water mass in the ocean.   

Mechanism 3 (temperature-driven expansion) only affects the 

uppermost part of the oceans on human time scales. Usually, 

temperature-driven changes in density are more important 

than salinity-driven changes. Seawater is characterised by a 

relatively small coefficient of expansion, but the effect should 

however not be overlooked, especially when interpreting 

satellite altimetry data. Temperature-driven expansion of a 

column of seawater will not affect the total mass of water 

within the column considered, and will therefore not affect the 

potential at the top of the water column. Temperature-driven 

ocean water expansion will therefore not in itself lead to 

lateral displacement of water, but only lift the ocean surface 

locally. Near the coast, where people are living, the depth of 

water approaches zero, so no temperature-driven expansion 

will take place here (Mörner 2015). Mechanism 3 is for that 

reason not important for coastal regions.  

Mechanism 4 (changes in glacier mass balance) is an important 

driver for global sea-level changes along coasts, for human 

time scales. Volume changes of floating glaciers – ice shelves – 

has no influence on the global sea-level, just like volume 

changes of floating sea ice has no influence. Only the mass-

balance of grounded or land-based glaciers is important for the 

global sea-level along coasts.  

Summing up: Mechanism 1 and 4 are the most important for 

understanding sea-level changes along coasts. 
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Global sea level from satellite altimetry, updated to May 2015 
 
 

 

Global sea level since December 1992 according to the Colorado Center for Astrodynamics Research at University of Colorado at Boulder. 

The blue dots are the individual observations, and the purple line represents the running 121-month (ca. 10 year) average. The two lower 

panels show the annual sea level change, calculated for 1 and 10 year time windows, respectively. These values are plotted at the end of 

the interval considered. Data from the TOPEX/Poseidon mission have been used before 2002, and data from the Jason-1 mission 

(satellite launched December 2001) after 2002. 

  

http://sealevel.colorado.edu/
http://topex-www.jpl.nasa.gov/mission/topex.html
http://sealevel.jpl.nasa.gov/mission/jason-1-launch.html
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Global sea level from tide-gauges, updated to December 2014 

 

 

Holgate-9 monthly tide gauge data from PSMSL Data Explorer. Holgate (2007) suggested the nine stations listed in the diagram to 

capture the variability found in a larger number of stations over the last half century studied previously. For that reason average values 

of the Holgate-9 group of tide gauge stations are interesting to follow. The blue dots are the individual average monthly observations, 

and the purple line represents the running 121-month (ca. 10 yr) average. The two lower panels show the annual sea level change, 

calculated for 1 and 10 yr time windows, respectively. These values are plotted at the end of the interval considered. 
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Northern Hemisphere weekly snow cover, updated to early February 2016 

 

Northern hemisphere snow cover (white) and sea ice (yellow) 3 February 2015 (left) and 2016 (right). Map source: National 

Ice Center (NIC). 

 

 
 
Northern hemisphere weekly snow cover since January 2000 according to Rutgers University Global Snow Laboratory. The thin blue line 
is the weekly data, and the thick blue line is the running 53-week average (approximately 1 year). The horizontal red line is the 1972-
2015 average. 

 

http://www.natice.noaa.gov/ims/
http://www.natice.noaa.gov/ims/
http://climate.rutgers.edu/snowcover/index.php
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Northern hemisphere weekly snow cover since January 1972 according to Rutgers University Global Snow Laboratory. The thin blue line 
is the weekly data, and the thick blue line is the running 53-week average (approximately 1 year). The horizontal red line is the 1972-
2015 average. 
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Atmospheric specific humidity, updated to January 2016 

 

Specific atmospheric humidity (g/kg) at three different altitudes in the lower part of the atmosphere (the Troposphere) since January 
1948 (Kalnay et al. 1996). The thin blue lines shows monthly values, while the thick blue lines show the running 37-month average (about 
3 years). Data source: Earth System Research Laboratory (NOAA).  

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Humidity
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Atmospheric CO2, updated to January 2016 

 

 

 

Monthly amount of atmospheric CO2 (upper diagram) and annual growth rate (lower diagram); average last 12 months minus average 

preceding 12 months, thin line) of atmospheric CO2 since 1959, according to data provided by the Mauna Loa Observatory, Hawaii, USA. 

The thick, stippled line is the simple running 37-observation average, nearly corresponding to a running 3 year average. 

http://www.esrl.noaa.gov/gmd/ccgg/trends/
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The phase relation between atmospheric CO2 and global temperature, updated to December 2015 
 

 

12-month change of global atmospheric CO2 concentration (Mauna Loa; green), global sea surface temperature (HadSST3; blue) and 
global surface air temperature (HadCRUT4; red dotted). All graphs are showing monthly values of DIFF12, the difference between the 
average of the last 12 month and the average for the previous 12 months for each data series. 
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Global surface air temperature and atmospheric CO2, updated to January 2016 
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Diagrams showing HadCRUT4, GISS, and NCDC monthly global surface air temperature estimates (blue) and the monthly 

atmospheric CO2 content (red) according to the Mauna Loa Observatory, Hawaii.  The Mauna Loa data series begins in 

March 1958, and 1958 was therefore chosen as starting year for the diagrams. Reconstructions of past atmospheric CO2 

concentrations (before 1958) are not incorporated in this diagram, as such past CO2 values are derived by other means (ice 

cores, stomata, or older measurements using different methodology), and therefore are not directly comparable with 

direct atmospheric measurements. The dotted grey line indicates the approximate linear temperature trend, and the boxes 

in the lower part of the diagram indicate the relation between atmospheric CO2 and global surface air temperature, 

negative or positive. Please note that the HadCRUT4 diagram is not yet updated beyond December 2015. 

 

Most climate models assume the greenhouse gas 
carbon dioxide CO2 to influence significantly upon 
global temperature. It is therefore relevant to 
compare different temperature records with 
measurements of atmospheric CO2, as shown in the 
diagrams above. Any comparison, however, should 
not be made on a monthly or annual basis, but for 
a longer time period, as other effects 
(oceanographic, etc.) may well override the 
potential influence of CO2 on short time scales such 
as just a few years. It is of cause equally 
inappropriate to present new meteorological 
record values, whether daily, monthly or annual, as 
support for the hypothesis ascribing high 
importance of atmospheric CO2 for global 
temperatures. Any such meteorological record 
value may well be the result of other phenomena.  

What exactly defines the critical length of a 
relevant time period to consider for evaluating the 
alleged importance of CO2 remains elusive, and still 
represents a topic for debate. However, the critical 
period length must be inversely proportional to the 
temperature sensitivity of CO2, including feedback 
effects. If the net temperature effect of 
atmospheric CO2 is strong, the critical time period 
will be short, and vice versa. 

However, past climate research history provides 
some clues as to what has traditionally been 
considered the relevant length of period over 
which to compare temperature and atmospheric 
CO2. After about 10 years of concurrent global 
temperature- and CO2-increase, IPCC was 
established in 1988. For obtaining public and 

http://www.ncdc.noaa.gov/oa/ncdc.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/
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political support for the CO2-hyphotesis the 10 year 
warming period leading up to 1988 in all likelihood 
was important. Had the global temperature instead 
been decreasing, politic support for the hypothesis 
would have been difficult to obtain.   

Based on the previous 10 years of concurrent 
temperature- and CO2-increase, many climate 
scientists in 1988 presumably felt that their 
understanding of climate dynamics was sufficient 
to conclude about the importance of CO2 for global 

temperature changes. From this it may safely be 
concluded that 10 years was considered a period 
long enough to demonstrate the effect of 
increasing atmospheric CO2 on global 
temperatures. 

Adopting this approach as to critical time length (at 
least 10 years), the varying relation (positive or 
negative) between global temperature and 
atmospheric CO2 has been indicated in the lower 
panels of the diagrams above. 
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Last 20-year QC1 global monthly air temperature changes, updated to January 2016 
 

 

 

 
Last 20 years global monthly average air temperature according to Quality Class 1 (UAH and RSS; see p.10) global monthly 
temperature estimates. The thin blue line represents the monthly values. The thick black line is the linear fit, with 95% 
confidence intervals indicated by the two thin black lines. The thick green line represents a 5-degree polynomial fit, with 
95% confidence intervals indicated by the two thin green lines. A few key statistics are given in the lower part of the 
diagram (please note that the linear trend is the monthly trend). 
 
 

 
 
The question if the global surface air temperature 
still increases, or if the temperature has levelled 
out during the last 15-18 years, is often mentioned 
in the current climate debate. The above diagram 
may be useful in this context, and demonstrates 
the differences between two often used statistical 
approaches to determine recent temperature 
trends. Please also note that such fits only attempt 
to describe the past, and usually have limited 
predictive power. In addition, before using any 
linear trend (or other) analysis of time series a 
proper statistical model should be chosen, based 
on statistical justification.  

For temperature time series there is no a priori 
physical reason why the long-term trend should be 
linear in time. In fact, climatic time series often 
have trends for which a straight line is not a good 
approximation, as can clearly be seen from several 
of the diagrams in the present report.  
 
For an excellent description of problems often 
encountered by analyses of temperature time 
series analyses please see Keenan, D.J. 2014: 
Statistical Analyses of Surface Temperatures in the 
IPCC Fifth Assessment Report. 
 

 
 
 

http://www.informath.org/AR5stat.pdf
http://www.informath.org/AR5stat.pdf
http://www.informath.org/AR5stat.pdf
http://www.informath.org/AR5stat.pdf
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Sunspot activity and QC1 average satellite global air temperature, updated to January 2016  
 
 

 
 
Variation of global monthly air temperature according to Quality Class 1 (UAH and RSS; see p.10) and observed sunspot 
number as provided by the Solar Influences Data Analysis Center (SIDC), since 1979. The thin lines represent the monthly 
values, while the thick line is the simple running 37-month average, nearly corresponding to a running 3 yr average. The 

asymmetrical temperature 'bump' around 1998 is influenced by the oceanographic El Niño phenomenon in 1998.   

http://www.climate4you.com/SeaTemperatures.htm#La Niña and El Niño episodes
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Climate and history; one example among many 

 

1709: The year that Europe froze solid and the Swedish army was defeated at 
Poltava. 
 

 

The Venetian lagoon frozen over in 1709. 

 

Early January 1709 temperatures were dropping over 

most of Europe (Pain 2009). The cold remained for three 

weeks, and was followed by a brief thaw. Then 

temperatures plunged again and stayed there. From 

Scandinavia in the north to Italy in the south, lakes, 

rivers and even the sea froze. At Upminster, shortly 

north-east of London, temperature fell to -12
o
C on 10 

January 1709, while it sank to -15
o
C in Paris on 14 

January, and stayed at that level for the next 11 days. It 

has been estimated that the winter air temperature in 

Europe was as much as 7
o
C below the average for 20th 

century Europe. Not only was January very cold, it also 

turned out to be unusually stormy (Pain 2009). 

In England the winter of 1709 became known as the 

Great Frost, while it in France entered the legend as Le 

Grand Hiver (Pain 2009). In France, even the king and his 

courtiers at the Palace of Versailles struggled to keep 

warm. In Scandinavia the Baltic froze so thoroughly that 

people could walk across the sea as late as April 1709. In 

Switzerland hungry wolves became a problem in villages. 

Venetians were able to skid across the frozen lagoon 

(see illustration above).  

According to a canon from Beaune in Burgundy, 

"travellers died in the countryside, livestock in the 

stables, wild animals in the woods; nearly all birds died, 

wine froze in barrels and public fires were lit to warm the 

poor". From all over the country came reports of people 

found frozen to death. Roads and rivers were blocked by 

snow and ice, and transport of supplies to the cities 

became difficult. Paris waited three months for fresh 

supplies (Pain 2009). 

In Russia, the intense cold contributed significantly to 

the defeat of the Swedish army at Poltava under King 

Karl XII. Poltava became a political turning point for both 

Sweden and Russia: Sweden never regained its former 

military might, while Russia began to emerge as a 

European superpower, as outlined below. 
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King Karl XII of Sweden (left). Battle of Poltava (centre). King Karl at the Dnieper River during the catastrophic retreat 
following the battle of Poltava. 

 

In 1697 the Swedish king Karl XII (1682-1718) assumed 

the crown at the age of fifteen, at the death of his 

father. As king, he embarked on a series of battles 

overseas. In 1700, Denmark-Norway, Saxony, and Russia 

united in an alliance against Sweden, using the 

perceived opportunity as Sweden was ruled by the 

young and inexperienced King. Early that year, all three 

countries declared war against Sweden. King Karl had to 

deal with these threats one by one, which he in a very 

determined way set out to do.  

Having first defeated Denmark-Norway in 1700, King 

Karl turned his attention upon the two other powerful 

neighbours, Poland and Russia; lead by King August II 

and Tsar Peter the Great, respectively. First Russia was 

attacked. At the Narva Riverthe outnumbered Swedish 

army 20 November 1700 attacked the much larger 

Russian army under cover of a blizzard, divided the 

Russian army in two and won the battle. Next Karl next 

turned towards Poland and defeated King August and his 

allies at Kliszow in 1702. Then he turned back towards 

Russia, to finish Tsar Peter off for good.  

In the meantime, Tsar Peter had embarked on a military 

reform plan to improve the quality of the Russian army. 

Especially the development of the artillery was 

emphasised. In the last days of 1707 King Karl crossed 

the frozen Weichsel River, and began advancing into 

Ukraine with his 77,400 man strong army. Already 28 

January 1708 Karl together with an advanced group of 

600 men crossed Njemen River and took the city 

Grodno. Shortly after this all hostilities were stopped, as 

both armies went into winter quarters.  

The Russian overall strategy was to avoid a decisive 

battle before the Swedish army had been weakened by 

the progress of time, retreating into and making use of 

the almost endless Russian space. With considerable 

success this strategy was again used in 1812 and 1941. 

When hostilities were resumed in June 1708 the Russian 

army therefore slowly retreated towards Moscow, 

burning all villages to make the Swedish supply situation 

difficult. With great success this tactic would be used 

again 105 years later against the French invasion under 

Napoleon, and was in 1708 known as the Zjolkijevskij 

plan (Englund 1989). First Karl XII headed towards 

Moscow with his army, but it rapidly turned out being 

very difficult to supply the army in the deserted 

landscape.  In addition, the summer 1708 was cold and 

wet, making life miserable for the Swedish soldiers. Karl 

XII therefore decided to turn south-east towards the 

more rich regions around the city Poltava. However, 

before reaching Poltava the winter began, and the 

armies once again had to go into winter quarters.  

The Swedish army went into winter quarters at the city 

Baturin, about 200 km NE of Kiev. The winter rapidly 

became very cold, not only in Russia, but in most of 

Europe, adding additional trouble to the already difficult 

Swedish supply situation. At the end of January 1709 the 

Swedish army resumed hostilities, but the winter soon 

made all operations virtually impossible. It became late 

April 1709 before Karl reached the city Poltava, 130 km 

SW of Kharkov. 

The extremely low temperatures characterizing the 

winter 1708-1709 had taken their toll on the Swedish 

soldiers. When the Swedish army finally began its siege 

of Poltava 1 May 1709, Karl has lost most of his army 

without any big battles being fought. In June 1709 Tsar 

Peter began concentrating an army shortly north of 
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Poltava. Karl had to face this treat, but following the 

hard winter he was only able to muster about 12,000 

men for the attack. The attack was launched 28 June 

1709, but was affected by some tactical confusion on 

the Swedish side. After some initial successes, the 

Swedish army was defeated thoroughly by the much 

larger Russian army, mainly due to its numerical 

superiority, and partly because of the now very strong 

and efficient Russian artillery. A catastrophic retreat 

followed to the Dnieper River, where what was left of 

the Swedish army had to surrender. 

By this, the battle at Poltava represented a climatic 

induced turning point for both Sweden and Russia. 

Sweden never regained its former military might, while 

Russia was beginning to emerge as a European 

superpower.  

King Karl XII himself managed to escape with 1,200 

Swedish survivors to the northerly province of the 

Ottoman Empire. Here he was held as a kind of prisoner 

until 1714, when he jumped onto a horse and escaped 

back to Sweden. He died 30 November 1718 during the 

siege of the Norwegian fortifications at Frederikssten. 

Some rumours claim that he was shot by a Swedish 

officer. A more likely cause, however, is that he simply 

did not take sufficient cover against fire from the 

Norwegian soldiers, which often represents an 

unhealthy tactic, even for Kings.  
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